This article was downloaded by:

On: 30 January 2011

Access details: Access Details: Free Access

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Phosphorus, Sulfur, and Silicon and the Related Elements

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713618290

THIOL ADDITIONS TO 1,4-DIARYLSULFONYL-2-BUTYNES. STEREOCHEMISTRY OF ADDITION AND REGIOSPECIFIC ELIMINATIONS FROM THE ADDUCTS

B. S. Thyagarajan^a; B. F. Wood Jr.^a; J. A. Glowienka^a; P. Delgado^a University of Texas at San Antonio, San Antonio, TX

To cite this Article Thyagarajan, B. S. , Wood Jr., B. F. , Glowienka, J. A. and Delgado, P.(1985) 'THIOL ADDITIONS TO 1,4-DIARYLSULFONYL-2-BUTYNES. STEREOCHEMISTRY OF ADDITION AND REGIOSPECIFIC ELIMINATIONS FROM THE ADDUCTS', Phosphorus, Sulfur, and Silicon and the Related Elements, 25: 1, 1-9

To link to this Article: DOI: 10.1080/03086648508074250 URL: http://dx.doi.org/10.1080/03086648508074250

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

THIOL ADDITIONS TO 1,4-DIARYLSULFONYL-2-BUTYNES. STEREOCHEMISTRY OF ADDITION AND REGIOSPECIFIC ELIMINATIONS FROM THE ADDUCTS

B. S. THYAGARAJAN,* B. F. WOOD, JR., J. A. GLOWIENKA and P. DELGADO

University of Texas at San Antonio, San Antonio, TX 78285

(Received March 8, 1985, in final form April 11, 1985)

Thiol additions to 1,4-diarylsulfonyl-2-butynes result in stereoselective formation of 1,4-diarylsulfonyl-2-arylthio-2-butenes with a preponderance of the E isomer over the Z. Contrary to the behaviour of similar adducts from 1-arylsulfonyl-4-(N'-anilino)-2-butynes and 1-arylsulfonyl-4-arylthio-2-butynes, the vinyl sulfides obtained from the diarylsulfonylbutynes undergo facile isomerization under mild base catalysis. A regiospecific elimination followed by readdition is shown to be the mechanism for such isomerizations.

In a recent publication¹ we outlined the complete regiospecificity and high degree of stereoselectivity observed in the addition of thiols to the alkynes 1 and 2. The vinyl sulfides 3 and 4 so obtained were also shown to be completely resistent to geometric interconversion between the E and Z isomers.

^{*}Author to whom all correspondence should be addressed.

$$R_{1} = A. \ 4-CH_{3} \\ B. \ H \\ C. \ 4-CL \\ D. \ 4-CH_{3}O$$

$$R_{1} = A. \ 4-CH_{3}O$$

$$R_{2} = A. \ 4-CH_{3}O$$

$$R_{1} = A. \ 4-CH_{3}O$$

$$R_{2} = A. \ 4-CH_{3}O$$

$$R_{1} = A. \ 4-CH_{3}O$$

$$R_{2} = A. \ 4-CH_{3}O$$

$$R_{2} = A. \ 4-CH_{3}O$$

$$R_{3} = A. \ 4-CH_{3}O$$

$$R_{4} = A. \ 4-CH_{5}O$$

$$R_{5} = A. \ 4-CH_{5}O$$

$$R_{1} = A. \ 4-CH_{5}O$$

$$R_{2} = A. \ 4-CH_{5}O$$

$$R_{3} = A. \ 4-CH_{5}O$$

$$R_{4} = A. \ 4-CH_{5}O$$

$$R_{5} = A. \ 4-CH_{5}O$$

$$R_{6} = A. \ 4-CH_{5}O$$

$$R_{7} = A. \ 4-CH_{5}O$$

$$R_{8} = A. \ 4-CH_{5}O$$

$$R_{1} = A. \ 4-CH_{5}O$$

$$R_{2} = A. \ 4-CH_{5}O$$

$$R_{3} = A. \ 4-CH_{5}O$$

$$R_{4} = A. \ 4-CH_{5}O$$

$$R_{5} = A. \ 4-CH_{5}O$$

$$R_{6} = A. \ 4-CH_{5}O$$

$$R_{7} = A. \ 4-CH_{5}O$$

$$R_{8} = A. \ 4-CH_{5}O$$

$$R_{1} = A. \ 4-CH_{5}O$$

$$R_{2} = A. \ 4-CH_{5}O$$

$$R_{3} = A. \ 4-CH_{5}O$$

$$R_{4} = A. \ 4-CH_{5}O$$

$$R_{5} = A. \ 4-CH_{5}O$$

$$R_{5} = A. \ 4-CH_{5}O$$

$$R_{7} = A. \ 4-CH_{5}O$$

$$R_{8} = A. \ 4-CH_{5}O$$

$$R_{1} = A. \ 4-CH_{5}O$$

$$R_{2} = A. \ 4-CH_{5}O$$

$$R_{3} = A. \ 4-CH_{5}O$$

$$R_{4} = A. \ 4-CH_{5}O$$

$$R_{5} = A. \ 4-CH_{5}O$$

$$R_{5} = A. \ 4-CH_{5}O$$

$$R_{7} = A. \ 4-CH_{5}O$$

$$R_{8} =$$

SCHEME 1 Stereoselective addition of thiols to 1,4-diarylsulfonyl-2-butynes 5

In this study, we present results of similar additions of thiols to 1,4-diarylsulfonyl-2-butynes (5). Owing to the inherent symmetry of the system chosen, the question of regiospecificity is obliterated; but the high degree of stereoselectivity observed earlier is found equally prominently in the vinyl sulfides 6(E) and 6(Z).

Despite the apparent similarity among the three systems, we have uncovered a number of disparities between the alkynes 1 and 2 on the one hand and the butyne 5 on the other. These are set out in the sequel.

Under comparable conditions, with identical substituents on the two aromatic rings ($R_1=R_2=CH_3$) in all the three systems 1, 2, and 5, the diarylsulfonyl compounds 5 displayed far greater reactivity in the nucleophilic additions. Whereas, alkyne 1 took 6 hours to undergo completion of addition, and the butyne 2 took 10 hours, the butyne 5 required only 40 minutes for completion of reaction. This striking difference obviously arises from the increased number of acidic sites available in 5 for deprotonation and tautomerization to allene and subsequent addition of the thiol.

In support of the above suggestion, we also observed that the nature of the substituent on the arylsulfonyl moiety affected the relative rates of thiol addition. For instance, under identical conditions, the butyne 5c required only 10 minutes for completion of addition, while compound 5d took 2 hours and 40 minutes for complete addition of the same thiol! It is clear that the acidity of the proton "alpha" to the sulfone plays a crucial role in the addition of the thiol. If the addition occurred directly on the triple bond, there should be no observable differences among the variously substituted diarylsulfonyl-2-butynes. However, the marked

differences noted above offer support to the postulate that the addition of the thiol is to the allene and not to the alkyne.³

The stereoselectivity observed in the case of the diarylsulfonyl-2-butynes 5 parallelled the results obtained earlier with 1 and 2. The ratio of 6(E) to 6(Z) was close to 75:25. (See experimental for details of assignment of geometry based on ^{13}C and ^{1}H NMR spectra.) Under the experimental conditions viz. in benzene solution, in the presence of catalytic amounts of triethylamine as base, there was no interconversion between the E and Z isomers. However, when the solvent was changed to dimethylformamide, even at room temperature and with only one-fourth equivalent of NEt₃, a very rapid equilibration occurred resulting in a ratio of E to Z = 30:70! Equilibrium was reached within a matter of 3 hours. Thus for the first time, among the three systems studied so far viz. 1, 2, and 5, it was possible to show that the product distribution of vinyl sulfides, resulting from addition to the diarylsulfonyl butynes, was indeed kinetically controlled. It also raises the additional questions: Why do the vinyl sulfides 6(E) and 6(Z) isomerize so readily while their counterparts 3 and 4 fail to do so? What is a possible mechanism for such isomerization? Answers to these questions are considered in the sequel.

Examination of the common elements of the structures 3, 4, and 6 offers a clue that only one of the two allylic methylenes may possibly be involved in the isomerization process. The δ -methylene is uniquely different in the three cases. An anion formed at the δ -carbon in 6 has a greater measure of stabilization than an anion formed at the α -carbon (see formula 7 below).

$$6(E) \text{ or } 6(Z) \longrightarrow \begin{array}{c} & & & & \\ & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & &$$

The added stabilization of the anion 7 by the arylthio function (in the case of 6(E) and 6(Z)) could induce a greater degree of delocalization, thereby lowering the bond order between the β - and γ -carbons, permitting rotation and configurational isomerization.

SCHEME 2 Isomerization via elimination-readdition

An alternative possibility is the elimination of an arylsulfinate function to yield a transient 1-arylsulfonyl-3-arylthio-1,3-butadiene (8) which can revert back to 6(E) and 6(Z) by 1,4-addition of the nucleophile. This pathway is illustrated in Scheme 2. Such a diene should then be amenable to capture by other nucleophiles just as well. Indeed, we have proven this to be so. In the presence of external arylsulfinates, arylthiolates, or even morpholine, it was possible to intercept the diene and obtain the modified butene derivatives 9, 10, and 11 as illustrated in the accompanying Scheme 3.

SCHEME 3 Capture of the diene 8 by nucleophiles

Irrespective of the nature of the nucleophile employed, addition to the diene 8 always led predominantly to the Z isomer. In the simple isomerization of a vinyl sulfide such as 6, the arylsulfinate that is eliminated rejoins the parent molecule resulting in the altered isomer ratio of E to Z. We attempted to adduce further support to this possibility by conducting the base catalyzed isomerization in high dilution, in the hope the larger dilution can slow down the 1,4-addition to the diene. In the event, this proved true (see Experimental). However, numerous attempts to isolate the diene resulted only in a polymeric material being formed. The capture of the diene 8 by a wide variety of other nucleophiles has amply been demonstrated in the study. Further work is in progress to devise conditions for the possible isolation of the diene and its exploitation in synthetic applications.

EXPERIMENTAL

General Comments. Nuclear magnetic resonance spectra were recorded on a Varian T-60A spectrometer using tetramethylsilane as the internal standard in CDCl₃ solution. Melting points were determined by using a Buchi SMP-20 capillary melting point apparatus and are uncorrected. Elemental analyses were carried out by MicAnal Laboratories, Inc., Tucson, Arizona.

The 1,4-diarylsulfonyl-2-butynes 5 were prepared by known procedures.⁵ They were characterized by their spectral properties and melting points, all of which showed excellent agreement with the reported values.

The ratios of the E and Z isomers were determined by measuring the 1H NMR spectra of aliquots collected from the reaction mixtures. (The numbers reflect the relative absorptions by the vinylic protons in each isomer.) The values are accurate within $\pm 5\%$. This was confirmed by data from the spectra of authentic mixtures containing each isomer.

1,4-Diarylsulfonyl-2-arylthio-2-butenes, 6. A mixture of triethylamine (0.76 g, 0.0075 mole) and the arene thiol (0.03 mole) in benzene (100 ml) was added, in one lot, to a vigorously stirred solution of the appropriate 1,4-diarylsulfonyl-2-butynes 5 (0.03 mole) in benzene (300 ml). This mixture was stirred at ambient temperature under nitrogen until full consumption of the starting materials was observed (10–160 minutes) by TLC analysis. The reaction mixture was diluted with benzene (500 ml), washed with water (6 \times 150 ml) and dried over sodium sulfate. A small aliquot (10 ml) from the reaction mixture was evaporated; and the resulting oil was analyzed by ¹H NMR for determination of the kinetic E/Z product ratio (Table I). This aliquot was recombined with the bulk solution and the excess benzene was removed by rotary evaporation. The E isomer was isolated by diluting the chilled concentrate (30 ml benzene) with 15 ml ether and allowing the slow crystallization of the product. After complete removal of the E isomer

TABLE 1

1,4-Diarylsulfonyl-2-arylthio-2-butenes 6 from 5

Compd.	-	· · · · · · · · · · · · · · · · · · ·	Rxn. Time	Overall	E/Z	Ratio
6	\mathbf{R}_{1}	R_2	(minutes)	%Yield	Kinetic	Thermo
a	4-CH ₃	4-C1	40	84	78/22	30/70
b	4-CH ₃	4-Br	40	85	77/23	30/70
c	4-CH ₃	4-CH ₃	40	84	68/32	31/69
d	4-CH ₃	4-OCH ₃	40	86	68/32	36/64
e	4-CH ₃	3,4-Cl ₂	40	89	70/30	26/74
f	H	4-C1	40	83	77/23	29/71
g	H	4-Br	40	68	76/24	29/71
h	H	4-CH ₃	.40	72	70/30	34/66
i	H	4-OCH ₃	40	70	70/30	34/66
i	4-C1	4-Cl	10	80	77/23	26/74
k	4-C1	4-OCH ₃	10	80	66/34	38/62
1	4-OCH ₃	4-Cl	160	85	80/20	30/70
m	4-OCH ₃	4-OCH ₃	180	78	75/25	38/62

Downloaded At: 08:26 30 January 2011

TABLE 2
Physical and spectral properties of 6

56.92 (4.54) 56.96 (4.72) 3.86 3.96 5.60 7 52.39 (4.20) 3.90 4.00 5.67 7 52.39 (4.20) 3.90 4.00 5.67 7 52.39 (4.20) 3.90 4.00 5.67 7 52.27 (4.17) 52.39 (4.20) 3.90 4.00 5.67 7 52.26 (3.96) 3.73 4.20 6.12 7 6.14 (5.35) 3.70 4.23 6.00 7 59.76 (5.18) 59.70 (5.32) 3.80 3.90 5.30 7 59.76 (5.18) 59.70 (5.32) 3.80 3.90 5.30 7 59.20 (4.02) 3.21 (4.00) 3.88 4.00 5.75 7 55.23 (4.02) 3.77 4.20 6.17 7 55.23 (4.03) 55.24 (4.03) 3.87 4.00 5.62 7 55.24 (4.03) 55.24 (4.03) 3.87 4.20 6.10 8 60.26 (4.80) 60.45 (4.80) 3.77 4.20 6.10 8 60.26 (4.80) 60.45 (4.80) 3.77 4.20 6.10 8 60.26 (4.80) 60.45 (4.80) 3.77 4.20 6.10 8 60.26 (4.80) 60.45 (4.80) 3.75 4.20 5.90 5.90 6.10 8 60.26 (4.80) 60.45 (4.80) 3.75 4.20 5.90 6.10 8 60.26 (4.80) 60.45 (4.80) 3.75 4.20 5.90 8 5.30 5.30 5.30 5.30 5.30 5.30 5.30 5.30	Compd.		MP (°C.)	Elemental Ana Calculated	Elemental Analysis %C (%H) Calculated Found	CH, (α)*	CH,(8)**	¹ H NMR D CH(7)***	¹ H NMR Data (8 in CDCl ₃ , ppm) CH(γ)*** other absorptions
162-163 56.92 (4.54) 56.96 (4.72) 3.86 3.96 5.60 123-124 56.71 (4.42) 3.68 4.15 6.05 124-125 52.26 (3.96) 3.73 4.00 5.67 124-125 52.26 (3.96) 3.73 4.20 6.12 147-148 61.73 (5.35) 61.44 (5.43) 3.80 3.90 5.50 147-148 61.73 (5.18) 59.70 (5.32) 3.80 3.90 5.50 163-164 59.76 (5.18) 59.70 (5.32) 3.80 3.90 5.50 140-141 59.84 (5.13) 3.88 4.00 5.75 174-175 53.33 (4.07) 53.21 (4.00) 3.77 4.20 5.90 112-113 55.23 (3.97) 55.33 (4.13) 3.87 4.00 5.67 136-137 55.23 (3.97) 55.33 (4.13) 3.87 4.00 5.67 118-119 50.26 (4.80) 60.45 (4.80) 3.75 4.20 5.90 136-137 50.26 (4.80) 50.45 (4.80) 3.82 3.98 5.50 130-131 88.23 (4.64) 58.38 (4.72)						, , , , , ,	() 7		
123-124 56.71 (4.42) 3.68 4.15 6.05 164-165 52.27 (4.17) 52.39 (4.20) 3.90 4.00 5.67 124-125 52.26 (3.96) 3.73 4.20 6.12 7 147-148 61.73 (5.35) 61.44 (5.43) 3.80 3.90 5.50 7 163-164 59.76 (5.18) 59.70 (5.31) 3.70 4.23 6.00 7 163-164 59.76 (5.18) 59.70 (5.31) 3.70 4.20 5.90 7 112-113 53.33 (4.07) 53.21 (4.00) 3.88 4.00 5.75 7 112-113 55.23 (3.97) 55.33 (4.13) 3.87 4.00 5.62 7 129-130 50.48 (3.63) 50.68 (3.62) 3.90 4.03 5.67 7 136-137 55.23 (4.06) 3.77 4.20 6.10 8 5.67 7 136-137 50.26 (4.80) 60.45 (4.80) 3.75 4.20 6.10 8 5.67 7 136-137 60.26 (4.80) 60.45 (4.80) 3.77 4.20 6.10		ш	162-163	56.92 (4.54)	56.96 (4.72)	3.86	3.96	5.60	7.7-6.95 (m, 12 H), 2.43 (s, 6 H)
164-165 52.27 (4.17) 52.39 (4.20) 3.90 4.00 5.67 124-125 52.26 (3.96) 3.73 4.20 6.12 147-148 61.73 (5.35) 61.44 (5.43) 3.80 3.90 5.50 147-148 61.76 (5.35) 3.70 4.23 6.00 7 163-164 59.76 (5.18) 59.70 (5.32) 3.80 3.90 5.30 7 140-141 59.84 (5.18) 59.84 (4.00) 3.88 4.00 5.75 7 112-113 57.23 (3.97) 55.33 (4.13) 3.87 4.00 5.62 7 136-137 55.23 (3.97) 55.33 (4.13) 3.87 4.00 5.62 7 136-137 55.23 (3.97) 55.33 (4.13) 3.87 4.00 5.62 7 136-137 55.23 (4.06) 3.77 4.20 6.10 8 5.62 7 136-137 55.23 (4.06) 3.75 4.20 5.00 10 8 6.10 8 6.10 8 8 6.10 8 8 6.10 8 8 10		Z	123-124	,	56.71 (4.42)	3.68	4.15	6.05	7.9-6.68 (m, 12 H), 2.45 (s, 6 H)
124-125 52.26 (3.96) 3.73 4.20 6.12 147-148 61.73 (5.35) 61.44 (5.43) 3.80 3.90 5.50 127-128 61.76 (5.35) 3.70 4.23 6.00 163-164 59.76 (5.18) 59.70 (5.32) 3.80 3.90 5.50 140-141 59.84 (5.21) 3.70 4.20 5.90 7 174-175 53.33 (4.07) 53.21 (4.00) 3.77 4.20 5.90 7 112-113 55.23 (3.97) 55.33 (4.13) 3.87 4.00 5.62 7 129-130 50.48 (3.63) 50.68 (3.62) 3.90 4.03 5.67 7 118-119 50.24 (4.80) 60.45 (4.80) 5.64 4.00 5.67 7 136-137 50.26 (4.80) 60.45 (4.80) 3.82 3.98 5.50 7 136-137 60.26 (4.80) 60.45 (4.80) 3.75 4.20 5.00 8 136-137 60.26 (4.80) 60.45 (4.80) 3.82 3.98 5.50 1 153-154 58.23 (4.64) 58.38 (4.77) <th></th> <th>Щ</th> <th>164-165</th> <th>52.27 (4.17)</th> <th>52.39 (4.20)</th> <th>3.90</th> <th>4.00</th> <th>2.67</th> <th>7.8-7.20 (m, 12 H), 2.47 (s, 6 H)</th>		Щ	164-165	52.27 (4.17)	52.39 (4.20)	3.90	4.00	2.67	7.8-7.20 (m, 12 H), 2.47 (s, 6 H)
147-148 61.73 (5.35) 61.44 (5.43) 3.80 3.90 5.50 127-128 61.76 (5.35) 3.70 4.23 6.00 163-164 59.76 (5.18) 59.70 (5.32) 3.80 3.90 5.30 140-141 59.84 (5.21) 3.70 4.20 5.90 174-175 53.23 (4.07) 53.21 (4.00) 3.88 4.00 5.75 136-137 55.23 (3.97) 55.33 (4.13) 3.87 4.00 5.62 123-124 55.52 (4.06) 3.77 4.20 6.11 129-130 50.48 (3.63) 50.68 (3.64) 3.75 4.20 6.10 136-137 60.26 (4.80) 60.45 (4.80) 3.82 3.98 5.50 136-137 60.26 (4.80) 60.45 (4.80) 3.82 3.98 5.50 136-137 60.26 (4.80) 60.45 (4.80) 3.82 3.98 5.30 153-154 58.23 (4.07) 3.75 4.20 5.90 160-161 48.60 (2.88) 3.80 4.20 5.90 165-166 50.92 (3.69) 50.82 (3.55) 3.92 4.01 5.27 158-159 50.23 (4.28) 3.34 4.20 5.93 5.93 139-140 53.34 (4.26) <th></th> <th>Z</th> <th>124-125</th> <th>,</th> <th>52.26 (3.96)</th> <th>3.73</th> <th>4.20</th> <th>6.12</th> <th>7.9-6.67 (m, 12 H), 2.47 (s, 6 H)</th>		Z	124-125	,	52.26 (3.96)	3.73	4.20	6.12	7.9-6.67 (m, 12 H), 2.47 (s, 6 H)
127-128 61.76 (5.35) 3.70 4.23 6.00 163-164 59.76 (5.18) 59.70 (5.32) 3.80 3.90 5.30 140-141 59.84 (5.21) 3.70 4.20 5.90 174-175 53.21 (4.00) 3.88 4.00 5.75 112-113 55.23 (3.97) 55.32 (4.06) 3.77 4.00 5.62 129-124 55.23 (3.97) 55.52 (4.06) 3.77 4.00 5.62 129-130 50.48 (3.63) 50.68 (3.62) 3.90 4.03 5.67 118-119 50.26 (4.80) 60.45 (4.80) 3.82 3.98 5.50 136-137 60.26 (4.80) 60.45 (4.80) 3.82 3.98 5.50 136-137 60.26 (4.80) 60.45 (4.80) 3.82 3.98 5.50 153-154 58.23 (4.77) 3.72 4.25 6.02 184-185 48.35 (3.12) 48.60 (2.88) 3.98 4.01 5.52 160-161 50.92 (3.69) 50.82 (3.55) 3.92 4.01 5.27 158-159 50.23 (4.28) 3.39 4.01 5.27 7 158-159 50.18 (4.87) 3.37 4.01 6.03 130-140 53.33 (4.28)		Щ	147-148	61.73 (5.35)	61.44 (5.43)	3.80	3.90	5.50	7.8-7.10 (m, 12 H), 2.4 (s, 6 H), 2.3 (s, 3 H)
163-164 59.76 (5.18) 59.70 (5.32) 3.80 3.90 5.30 140-141 59.84 (5.21) 3.70 4.20 5.90 174-175 53.33 (4.07) 53.21 (4.00) 3.88 4.00 5.90 112-113 55.23 (3.97) 55.33 (4.13) 3.87 4.00 5.57 123-124 55.23 (3.97) 55.53 (4.06) 3.77 4.00 5.62 129-130 50.48 (3.63) 50.68 (3.62) 3.90 4.01 6.10 8 129-130 50.48 (3.63) 60.48 (4.80) 60.45 (4.80) 3.75 4.20 6.10 8 136-137 60.26 (4.80) 60.45 (4.80) 3.82 3.98 5.67 7 136-137 60.26 (4.80) 60.45 (4.80) 3.82 3.98 5.50 7 136-134 58.23 (4.67) 3.75 4.20 5.90 8 153-154 58.23 (4.64) 3.83 3.98 5.30 1 160-161 48.60 (2.89) 3.92 4.01 5.27 7 165-166 50.92 (3.69) 50.82 (3.55) 3.92 4.01 5.27 7 156-159 50.18 (4.87) 3.77 4.20 5.93 1 156-169 <th></th> <td>7</td> <td>127-128</td> <td></td> <td>61.76 (5.35)</td> <td>3.70</td> <td>4.23</td> <td>90.9</td> <td>7.9-6.67 (m, 12 H), 2.47 (s, 6 H), 2.3 (s, 3 H)</td>		7	127-128		61.76 (5.35)	3.70	4.23	90.9	7.9-6.67 (m, 12 H), 2.47 (s, 6 H), 2.3 (s, 3 H)
140-141 59.84 (5.21) 3.70 4.20 5.90 174-175 53.33 (4.07) 53.21 (4.00) 3.88 4.00 5.75 112-113 55.23 (3.97) 55.33 (4.13) 3.87 4.00 5.55 123-124 55.23 (3.97) 55.53 (4.06) 3.77 4.20 6.10 8 129-130 50.48 (3.63) 50.68 (3.62) 3.90 4.03 5.67 7 118-119 50.51 (4.80) 60.45 (4.80) 3.75 4.20 6.10 8 136-131 50.21 (4.80) 60.45 (4.80) 3.82 3.98 5.50 7 136-134 58.23 (4.64) 58.38 (4.77) 3.72 4.25 6.02 8 136-131 58.23 (4.07) 3.75 4.20 5.90 8 160-161 48.60 (2.88) 3.80 4.01 5.27 7 160-161 48.60 (2.88) 3.87 4.01 5.27 7 156-165 50.92 (3.69) 50.81 (3.41) 3.67 4.20 5.93 5.93 139-140 53.53 (4.28) 53.34 (4.26)		ш	163-164	59.76 (5.18)	59.70 (5.32)	3.80	3.90	5.30	7.8-6.70 (m, 12 H), 3.7 (s, 3 H), 2.4 (s, 6 H)
174-175 53.33 (4.07) 53.21 (4.06) 3.88 4.00 5.75 112-113 55.23 (3.97) 55.33 (4.13) 3.87 4.00 5.52 136-137 55.23 (3.97) 55.33 (4.13) 3.87 4.00 5.62 129-130 50.48 (3.63) 50.68 (3.62) 3.90 4.03 5.67 118-119 50.26 (4.80) 60.45 (4.80) 3.75 4.20 6.10 8 136-137 60.26 (4.80) 60.45 (4.80) 3.72 4.20 6.10 8 137-128 59.94 (4.77) 3.72 4.25 6.02 8 130-131 58.03 (4.07) 3.75 4.20 5.90 8 184-185 48.35 (3.12) 48.09 (3.14) 3.97 4.07 5.62 160-161 48.60 (2.88) 3.80 4.20 5.93 8 165-166 50.92 (3.69) 50.82 (3.55) 3.92 4.01 5.27 158-159 50.82 (3.48) 3.37 4.20 5.93 8 139-140 53.53 (4.28) 53.34 (4.26) 3.87 4.20 5.93 131-132 56.18 (4.87) 3.87 4.20 5.93 5.93 136-157 56.28 (4.89) 3.67 <t< th=""><th></th><td>Z</td><td>140-141</td><td></td><td>59.84 (5.21)</td><td>3.70</td><td>4.20</td><td>5.90</td><td>7.9-6.80 (m, 12 H), 3.8 (s, 3 H), 2.5 (s, 6 H)</td></t<>		Z	140-141		59.84 (5.21)	3.70	4.20	5.90	7.9-6.80 (m, 12 H), 3.8 (s, 3 H), 2.5 (s, 6 H)
112-113 53.20 (4.02) 3.77 4.20 6.17 7 136-137 55.23 (3.97) 55.33 (4.13) 3.87 4.00 5.62 7 123-124 55.52 (4.06) 3.77 4.21 6.10 8 129-130 50.48 (3.63) 50.68 (3.62) 3.90 4.03 5.67 7 118-119 50.26 (4.80) 60.45 (4.80) 3.17 4.20 6.10 8 136-137 60.26 (4.80) 50.45 (4.80) 3.32 3.98 5.50 1 137-138 58.23 (4.64) 58.38 (4.72) 3.83 3.98 5.30 1 130-131 58.03 (4.07) 3.75 4.20 5.90 8 160-161 48.60 (2.88) 3.80 4.23 6.17 8 165-166 50.92 (3.69) 50.82 (3.55) 3.92 4.01 5.27 158-159 50.23 (4.28) 53.34 (4.26) 3.87 4.20 5.93 139-140 53.53 (4.28) 53.34 (4.26) 3.87 4.20 5.93 131-132 56.18 (4.87) 3.77 4.20 <th></th> <td>Щ</td> <td>174-175</td> <td>53.33 (4.07)</td> <td>53.21 (4.00)</td> <td>3.88</td> <td>4.00</td> <td>5.75</td> <td>7.8-6.80 (m, 11 H), 2.47 (s, 6 H)</td>		Щ	174-175	53.33 (4.07)	53.21 (4.00)	3.88	4.00	5.75	7.8-6.80 (m, 11 H), 2.47 (s, 6 H)
136-137 55.23 (3.97) 55.33 (4.13) 3.87 4.00 5.62 123-124 55.52 (4.06) 3.77 4.21 6.10 8 118-119 50.68 (3.62) 3.90 4.03 5.67 7 118-119 50.48 (3.63) 50.68 (3.64) 3.75 4.20 6.10 8 136-137 60.26 (4.80) 60.45 (4.80) 3.82 3.98 5.50 7 127-128 59.94 (4.77) 3.72 4.25 6.02 1 130-131 88.03 (4.07) 3.75 4.20 5.90 8 130-131 48.09 (3.14) 3.97 4.07 5.62 7 160-161 48.60 (2.88) 3.80 4.20 5.90 8 165-166 50.92 (3.69) 50.82 (3.55) 3.92 4.01 5.27 158-159 50.23 (4.28) 53.34 (4.26) 3.87 4.20 5.93 8 139-140 53.53 (4.28) 53.34 (4.26) 3.87 4.20 5.93 174-175 5.61 (3.41) 3.67 4.20 5.93 174-175 156-157 56.18 (4.87) 55.88 (4.89) 3.67 4.20 5.93 5.93 5.93 5.93 5.93 5.93 5.93 <th></th> <td>Z</td> <td>112-113</td> <td></td> <td>53.20 (4.02)</td> <td>3.77</td> <td>4.20</td> <td>6.17</td> <td>7.9-6.45 (m, 11 H), 2.47 (s, 6 H)</td>		Z	112-113		53.20 (4.02)	3.77	4.20	6.17	7.9-6.45 (m, 11 H), 2.47 (s, 6 H)
123-124 55.52 (4.06) 3.77 4.21 6.10 8 129-130 50.48 (3.63) 50.68 (3.62) 3.90 4.03 5.67 7 118-119 50.51 (3.64) 3.75 4.20 6.10 8 136-137 60.26 (4.80) 60.45 (4.80) 3.82 3.98 5.50 7 153-154 58.23 (4.64) 58.38 (4.77) 3.72 4.25 6.02 1.50 130-131 50.31 3.75 4.20 5.90 8 160-161 48.60 (3.14) 3.97 4.07 5.62 7 165-166 50.92 (3.69) 50.82 (3.55) 3.92 4.01 5.27 158-159 50.23 (3.69) 50.82 (3.55) 3.92 4.01 5.27 158-159 53.33 (4.28) 53.34 (4.26) 3.87 4.20 5.93 131-132 56.18 (4.87) 55.88 (4.89) 3.67 4.20 5.92 156-157 56.18 (4.87) 55.88 (4.89) 3.67 4.20 5.92 156-157 56.28 (4.89) 3.67 4.20 5.92 5.92		П	136-137	55.23 (3.97)	55.33 (4.13)	3.87	4.00	5.62	7.9-6.90 (m, 14 H)
129-130 50.48 (3.63) 50.68 (3.62) 3.90 4.03 5.67 118-119 50.51 (3.64) 3.75 4.20 6.10 8 136-137 60.26 (4.80) 60.45 (4.80) 3.82 3.98 5.50 127-128 59.94 (4.77) 3.72 4.25 6.02 8 153-154 58.23 (4.64) 58.38 (4.72) 3.83 3.98 5.33 7 130-131 58.03 (4.07) 3.75 4.20 5.90 8 160-161 48.60 (2.88) 3.80 4.21 6.17 8 165-16 50.92 (3.69) 50.82 (3.55) 3.92 4.01 5.27 7 158-159 50.61 (3.41) 3.87 4.20 5.93 8 139-140 53.53 (4.28) 53.34 (4.26) 3.70 4.17 6.08 131-132 56.18 (4.87) 55.88 (4.82) 3.70 4.17 6.08 156-157 56.28 (4.89) 3.67 4.20 5.92 7.7		2	123-124		55.52 (4.06)	3.77	4.21	6.10	8.0-6.67 (m, 14 H)
118-119 50.51 (3.64) 3.75 4.20 6.10 8 136-137 60.26 (4.80) 60.45 (4.80) 3.82 3.98 5.50 7 127-128 59.94 (4.77) 3.72 4.25 6.02 8 153-154 58.23 (4.64) 58.38 (4.72) 3.83 3.98 5.33 7 130-131 58.03 (4.07) 3.75 4.20 5.90 8 144-185 48.35 (3.12) 48.09 (3.14) 3.97 4.07 5.62 165-166 50.92 (3.69) 50.82 (3.55) 3.92 4.01 5.27 158-159 50.41 (3.41) 3.67 4.20 5.93 6 131-132 55.18 (4.87) 55.88 (4.82) 3.70 4.17 6.08 156-157 56.18 (4.87) 55.88 (4.82) 3.70 4.17 6.08 156-157 56.18 (4.87) 55.88 (4.89) 3.67 4.20 5.92 156-157 56.28 (4.89) 3.67 4.20 5.92		Ħ	129-130	50.48 (3.63)	50.68 (3.62)	3.90	4.03	2.67	7.9-6.87 (m, 14 H)
136-137 60.26 (4.80) 60.45 (4.80) 3.82 3.98 5.50 127-128 59.94 (4.77) 3.72 4.25 6.02 153-154 58.23 (4.64) 58.38 (4.72) 3.83 3.98 5.33 130-131 58.03 (4.07) 3.75 4.20 5.90 184-185 48.35 (3.12) 48.09 (3.14) 3.97 4.07 5.62 160-161 48.60 (2.88) 3.80 4.23 6.17 8 165-166 50.25 (3.69) 50.82 (3.55) 3.92 4.01 5.27 158-159 50.61 (3.41) 3.67 4.20 5.93 8 131-12 55.18 (4.87) 55.88 (4.82) 3.70 4.17 6.08 156-157 56.18 (4.87) 55.88 (4.89) 3.67 4.20 5.92		Ζ	118-119		50.51 (3.64)	3.75	4.20	6.10	8.0-6.60 (m, 14 H)
127-128 59.94 (4.77) 3.72 4.25 6.02 8 153-154 58.23 (4.64) 58.38 (4.72) 3.83 3.98 5.33 7 130-131 58.03 (4.07) 3.75 4.20 5.90 8 184-185 48.35 (3.12) 48.09 (3.14) 3.97 4.07 5.62 160-161 48.60 (2.88) 3.80 4.23 6.17 8 165-166 50.92 (3.69) 50.82 (3.55) 3.92 4.01 5.27 158-159 50.61 (3.41) 3.67 4.20 5.93 8 131-124 53.53 (4.28) 53.34 (4.26) 3.70 4.17 6.08 174-175 56.18 (4.87) 55.88 (4.82) 3.78 4.20 5.92 156-157 56.28 (4.89) 3.67 4.20 5.92		щ	136-137	60.26 (4.80)	60.45 (4.80)	3.82	3.98	5.50	7.9-6.77 (m, 14 H), 2.3 (s, 3 H)
153-154 58.23 (4.64) 58.38 (4.72) 3.83 3.98 5.33 7 130-131 58.03 (4.07) 3.75 4.20 5.90 8 184-185 48.35 (3.12) 48.09 (3.14) 3.97 4.07 5.62 160-161 48.60 (2.88) 3.80 4.23 6.17 8 158-166 50.92 (3.69) 50.82 (3.55) 3.92 4.01 5.27 158-159 50.61 (3.41) 3.67 4.20 5.93 8 131-132 53.34 (4.26) 3.70 4.17 6.08 156-157 56.18 (4.87) 55.88 (4.82) 3.78 4.17 6.08 156-157 56.28 (4.89) 3.67 4.20 5.92 7.7		Z	127-128		59.94 (4.77)	3.72	4.25	6.02	8.0-6.63 (m, 14 H), 2.27 (s, 3 H)
130-131 58.03 (4.07) 3.75 4.20 5.90 8 184-185 48.35 (3.12) 48.09 (3.14) 3.97 4.07 5.62 7 160-161 48.60 (2.88) 3.80 4.23 6.17 8 165-166 50.92 (3.69) 50.82 (3.55) 3.92 4.01 5.27 158-159 50.61 (3.41) 3.67 4.20 5.93 8 131-132 53.34 (4.26) 3.87 3.95 5.63 7 156-157 56.18 (4.87) 55.88 (4.82) 3.70 4.17 6.08 156-157 56.28 (4.89) 3.67 4.20 5.92		ш	153-154	58.23 (4.64)	58.38 (4.72)	3.83	3.98	5.33	7.9-6.67 (m, 14 H), 3.77 (s, 3 H)
184-185 48.35 (3.12) 48.09 (3.14) 3.97 4.07 5.62 160-161 48.60 (2.88) 3.80 4.23 6.17 165-166 50.92 (3.69) 50.82 (3.55) 3.92 4.01 5.27 158-159 50.61 (3.41) 3.67 4.20 5.93 8 139-140 53.53 (4.28) 53.34 (4.26) 3.87 3.95 5.63 131-132 56.18 (4.87) 55.88 (4.89) 3.67 4.20 5.92 156-157 56.28 (4.89) 3.67 4.20 5.92		Z	130-131		58.03 (4.07)	3.75	4.20	5.90	8.0-6.70 (m, 14 H), 3.67 (s, 3 H)
160-161 48.60 (2.88) 3.80 4.23 6.17 8 165-166 50.92 (3.69) 50.82 (3.55) 3.92 4.01 5.27 7 158-159 50.61 (3.41) 3.67 4.20 5.93 8 139-140 53.53 (4.28) 53.34 (4.26) 3.87 3.95 5.63 7 131-132 56.18 (4.87) 55.88 (4.82) 3.70 4.17 6.08 8 156-157 56.28 (4.89) 3.67 4.20 5.92 7		Ш	184-185	48.35 (3.12)	48.09 (3.14)	3.97	4.07	5.62	7.8-6.80 (m, 12 H)
165-166 50.92 (3.69) 50.82 (3.55) 3.92 4.01 5.27 7 158-159 50.61 (3.41) 3.67 4.20 5.93 8 139-140 53.53 (4.28) 53.34 (4.26) 3.87 3.95 5.63 7 131-132 53.37 (4.05) 3.70 4.17 6.08 8 174-175 56.18 (4.87) 55.88 (4.82) 3.78 3.92 5.33 7 156-157 56.28 (4.89) 3.67 4.20 5.92 7		Z	160-161		48.60 (2.88)	3.80	4.23	6.17	8.0-6.60 (m, 12 H)
158-159 50.61 (3.41) 3.67 4.20 5.93 8 139-140 53.53 (4.28) 53.34 (4.26) 3.87 3.95 5.63 7 131-132 53.37 (4.05) 3.70 4.17 6.08 8 174-175 56.18 (4.87) 55.88 (4.82) 3.78 3.92 5.33 7 156-157 56.28 (4.89) 3.67 4.20 5.92 7		щ	165-166	50.92 (3.69)	50.82 (3.55)	3.92	4.01	5.27	7.8-6.70 (m, 12 H), 3.8 (s, 3 H)
139-140 53.53 (4.28) 53.34 (4.26) 3.87 3.95 5.63 7 131-132 53.37 (4.05) 3.70 4.17 6.08 8 174-175 56.18 (4.87) 55.88 (4.82) 3.78 3.92 5.33 7 156-157 56.28 (4.89) 3.67 4.20 5.92 7		Z	158-159		50.61 (3.41)	3.67	4.20	5.93	8.0-6.73 (m, 12 H), 3.77 (s, 3 H)
131–132 53.37 (4.05) 3.70 4.17 6.08 8 1.74–175 56.18 (4.87) 55.88 (4.82) 3.78 3.92 5.33 7 156–157 56.28 (4.89) 3.67 4.20 5.92 7		ш	139-140	53.53 (4.28)	53.34 (4.26)	3.87	3.95	5.63	7.9-6.90 (m, 12 H), 3.87 (s, 3 H)
174-175 56.18 (4.87) 55.88 (4.82) 3.78 3.92 5.33 7 156-157 56.28 (4.89) 3.67 4.20 5.92 7		Z	131-132		53.37 (4.05)	3.70	4.17	80.9	8.0-6.60 (m, 12 H), 3.88 (s, 3 H)
156–157 56.28 (4.89) 3.67 4.20 5.92 7		Щ	174-175	56.18 (4.87)	55.88 (4.82)	3.78	3.92	5.33	7.8-6.70 (m, 12 H), 3.87 (s, 6 H), 3.78 (s, 3 H)
		7	156-157		56.28 (4.89)	3.67	4.20	5.92	7.9-6.70 (m, 12 H), 3.87 (s, 6 H), 3.73 (s, 3 H)

*Singlet. **Doublet. ***Triplet.

by filtration, the Z isomer was crystallized by dropwise addition of pet. ether. These crude solids of 6 (70–90% overall yield) were recrystallized from benzene-pet. ether. Table II lists the physical properties of all the vinyl sulfides 6(E) and 6(Z) produced in this study.

The geometric assignments of the E and Z isomers of butenes 6 are secured from 13 C NMR spectral evidence based on similar grounds to those reported. Typical 13 C NMR absorptions for these stereoisomers are provided by 6h. For the E isomer, these values are: 140.6, 138.7, 138.3, 134.6, 134.2, 134.0, 130.5, 129.4, 129.0, 128.3, 126.7, 120.5, 57.6 ($^{3}J_{CH} = 8.5$ Hz), 56.3 ($^{2}J_{CH} = 2.7$ Hz), and 21.4. For the Z isomer, these values are: 138.9, 138.7, 138.4, 134.2, 134.0, 133.3, 132.3, 130.1, 129.5, 129.1, 128.6, 128.3, 127.4, 126.9, 60.9 ($^{3}J_{CH} = 4.9$ Hz), 57.4 ($^{2}J_{CH} = 22.4$ Hz), and 21.2.

Attempted Equilibration of 6b Under Addition Reaction Conditions. A pure E and a pure Z sample (0.25 g, 0.0454 mmole) of compound 6b were each stirred at room temperature in the presence of triethylamine (0.01 g, 0.0113 mmole) in benzene (10 ml). No change in the reaction mixtures was observed (by TLC analysis) after 8 hours. Each mixture was diluted with benzene (200 ml), washed with water (4 × 200 ml), dried over sodium sulfate, and evaporated. ¹H NMR analysis of the residue confirmed that the E and Z isomers did not interconvert.

Equilibration of 1,4-Diarylsulfonyl-2-arylthio-2-butenes, 6. Samples of the pure E, pure Z, and mixtures of the two isomers of 6 were each equilibrated in dimethylformamide (DMF) using the following general procedure.

Triethylamine (0.0005 mole) and the appropriate sample of 6 (0.002 mole) were stirred in DMF (5 ml) under nitrogen at ambient temperature. After 30 minutes, 3 hours, and 17 hours, aliquots (0.5 ml) of the reaction mixture were diluted with benzene (50 ml), washed with water (5 × 30 ml), dried over sodium sulfate, and evaporated. The remaining oil was then analyzed. The E to Z ratio was determined by ¹H NMR analysis for each of these aliquots. The data showed equilibrium was reached within 3 hours in all the cases (see Table I).

The remaining reaction mixture was diluted with benzene (300 ml), washed with water (4×200 ml), and dried over sodium sulfate. The products crystallized as mixtures of the two isomers (70% yield) after the solution was concentrated to ca. 10 ml, chilled, and pet. ether was added. The separation of the isomers required fractional recrystallization of the E isomer from chloroform-ether solutions and the Z isomer from benzene-pet. ether. The spectral properties and the melting points of the pure solids were measured and each value agreed exactly with those compounds listed in Table II.

Treatment of 6f with Sodium 4-Toluenesulfinate. A solution containing sodium 4-toluenesulfinate dihydrate (4.28 g, 0.02 mole) and acetic acid (0.90 g, 0.015 mole) in DMF and water (30 ml and 10 ml, respectively) was added, in one lot, to 6f in DMF (2.39 g or 0.004 mole 6f per 30 ml DMF). This mixture was stirred under nitrogen for 17 hours at room temperature. Addition of benzene (500 ml) forced the precipitation of sulfinate salts which were removed by suction filtration. The filtrate was washed with water (6 × 300 ml) and dried over sodium sulfate.

An aliquot (20 ml) was removed from the reaction mixture. Evaporation of the benzene left behind an oil, which when analyzed by ¹H NMR, showed two sets of triplets in the vinylic region, viz. at 6.05 and 5.58 ppm. The relative peak heights of these signals indicated that the Z to E ratio was 73 to 27. A peak (singlet) at 2.45 ppm (Ar—CH₃) showed that the 4-CH₃C₆H₄SO₂—group was incorporated to the extent of 80% into the reaction products.

The product 9(Z) was isolated by evaporating the reaction mixture to approximately 10 ml benzene. Addition of ether (15 ml) to this chilled solution afforded relatively pure 9(Z) (1.36 g, 55% yield). Recrystallization from benzene-pet. ether afforded an analytical sample (mp = 143-144°C.): calculated for C₂₃H₂₁S₃O₄Cl gave: C, 56.10; H, 4.27. Found: C, 56.30; H, 4.12. The ¹H NMR' signals for this product are δ 8.0–6.67 (m, 13 H), 6.05 (t, 1 H), 4.23 (d, 2 H), 3.72 (s, 2 H), and 2.45 (s, 3 H). Subsequent crops (0.50 g) obtained from the filtrate were composed of the E and Z isomers of 9 and 6f. The E isomer of 9 was not isolated because of the complexity of this mixture.

Reaction of 6g with 3,4-Dichlorobenzenethiol. Triethylamine (3.86 g, 0.038 mole), 3,4-dichlorobenzenethiol (4.09 g, 0.023 mole), and compound 6g (4.0 g, 0.00765 mole) in DMF were stirred (1 hr.) under nitrogen at room temperature. This was diluted with benzene (400 ml), washed with 0.2 N KOH (4 \times 250 ml), and washed with water (5 \times 250 ml). After drying over sodium sulfate, a small aliquot of the reaction mixture was evaporated and analyzed by ¹H NMR (E to Z ratio was 21/79). This aliquot was recombined with the bulk solution for complete evaporation of the solvent. The oil which resulted was dissolved in ether (25 ml), chilled, and pet. ether added for crystallization of the product 10 (3.46 g, 81%) as a mixture of the E and Z isomers. Fractional recrystallization (chloroform-pet. ether) of this material by slow crystal growth at room temperature allowed for the removal of pure 10(Z) (mp. 97.5–98°C.). The pure 10(E) (mp. 104–105°C.) was isolated from the filtrate after removal of the Z isomer.

Support for the geometric assignments of the isomers of 10 is provided below. For 10(E): 1 H NMR: δ 7.93–6.90 (m, 12 H), 5.33 (t, 1 H), 3.73 (d, 2 H), 3.47 (s, 2 H). 13 C NMR: (CDCl₃) 141.6, 138.4, 134.9, 134.7, 133.8, 132.7, 132.5, 132.4, 131.5, 130.5, 130.2, 129.2, 128.1, 123.0, 117.6, 55.9 ($^2J_{CH} = 2.4$ Hz), and 35.3 ($^3J_{CH} = 8.5$ Hz). Analysis calculated for $C_{22}H_{17}S_3O_2$ BrCl₂: C, 47.23; H, 3.04. Found: C, 47.24; H, 3.01. For 10(Z): 1 H NMR: δ 7.93–6.70 (m, 12 H), 6.07 (t, 1 H), 4.2 (d, 2 H), 3.47 (s, 2 H). 13 C NMR (CDCl₃): 139.1, 138.3, 135.1, 133.5, 132.7, 132.4, 132.0, 130.9, 130.5, 130.3, 129.1, 129.0, 127.9, 122.8, 121.8, 56.9 ($^2J_{CH} = 2.4$ Hz), and 39.9 ($^3J_{CH} = 5.5$ Hz). Analysis calculated for $C_{22}H_{17}S_3O_2$ BrCl₂: C, 47.23; H, 3.04. Found: C, 47.34; H, 3.00.

Reaction of **6b** with Morpholine. Morpholine (1.27 g, 0.0146 mole) and the vinyl sulfide **6b** (4.0 g, 0.0073 mole) in DMF (30 ml) were stirred (1 hr.) under nitrogen. After the usual workup procedure in benzene solution, the solvent was stripped away by rotary evaporation. A ¹H NMR spectra of the resulting oil showed an absorption at 6.1 ppm (triplet) corresponding to the Z isomer of **11**. Another triplet observed at 5.67 ppm corresponded to trace amounts of unreacted **6b**. These assignments were confirmed by the selective crystallization of **6b** (0.28 g) and **11**(Z) (1.40 g, 49%) from ether-pet. ether solutions. The morpholino product was recrystallized from ether-pet. ether. The pure sample of **11**(Z) showed the following properties: mp. 70–71°C.; ¹H NMR; δ 7.92–6.93 (m, 8 H), 6.1 (t, 1 H), 4.23 (d, 2 H), 3.67–3.5 (m, 4 H), 2.83 (s, 2 H), 2.17 (s, 3 H), and 2.27–2.1 (m, 4 H). Analysis calculated for C₂₁H₂₄S₂O₃NBr: C, 52.28; H, 4.98. Found: C, 52.64; H, 4.79.

The E isomer of 11 was barely detectable by ¹H NMR and could not be isolated in pure form from the mixture.

Treatment of 6j with Triethylamine in a Dilute Solution of DMF. Pure E and pure Z 6j (0.54 g, 0.001 mole) were each stirred with triethylamine (0.10 g, 0.001 mole) in DMF (2000 ml) at room temperature. Aliquots (300 ml) of the reaction mixture were removed after 3, 19, and 48 hours. Each aliquot was worked up as follows: The aliquot was poured into water (one liter) and the products were extracted into ether (6×200 ml). The combined ether solution was washed with more water (5×300 ml). After concentrating the solution to about 50 ml ether, the mixture was washed again with water (3×50 ml) for complete removal of the DMF. The remaining ether was dried over sodium sulfate and completely evaporated. The residual oil was dissolved in CDCl₃ and analyzed by ¹H NMR.

The spectra of aliquots taken after 3 and 19 hours revealed the presence of unchanged E and Z isomers of 6j. In addition they also showed four new signals at 6.67, 6.41, 5.90, and 5.57 ppm suggestive of the diene 8. The 48 hour aliquot showed complete elimination of the starting material. However all attempts to isolate the diene afforded only tarry, dark oils—an experience parallelled by the reports of earlier work.⁴

ACKNOWLEDGMENTS

We thank Dr. N. F. Swynnerton of the Southwest Research Institute, San Antonio, Texas, for the ¹³C NMR spectral information cited in the text. Acknowledgments are also made to D. Wiedenfeld, an undergraduate research student, for technical assistance.

REFERENCES

- 1. B. S. Thyagarajan, B. F. Wood, Jr. and N. F. Swynnerton, Phosphorus and Sulfur, 21, 357 (1985).
- 2. To our knowledge there is no available data of acidities of methylenes adjacent to an arylsulfonyl function nor of their sensitivity to the nature of the substituent on the aromatic ring. We plan to explore this aspect of our study in a more quantitative fashion in future publications.
- 3. This point was brought out in our earlier publication based upon the observed regiospecificity of the addition of thiols to 1 and 2 (ref. 1). Further support that 5 rearranges to the allene was demonstrated by the fact that 5 affords 1,4-diarylsulfonyl-1,3-butadienes under similar conditions (however, in the absence of ArSH). See B. S. Thyagarajan, B. F. Wood, Jr. and N. F. Swynnerton, *Phosphorus and Sulfur*, 21 5 (1984).
- 4. This has been observed for sulfide- and sulfone-substituted dienes: a. A. J. Bridges and J. W. Fischer, J. Org. Chem., 49, 2954 (1984); b. B. Akermark, J. Nystrom, T. Rein, J. Backvall, P. Helquist and R. Aslanian, Tetrahedron Lett., 25, 5719 (1984); c. Although 1,3-butadien-1-yl phenyl sulfone has been described in 2 + 2 addition reactions by J. J. Eisch, J. E. Galle and L. E. Hallenback, J. Org. Chem., 47, 1610 (1982), the diene itself was not characterized as a pure entity. Instead, 1-amino-4-(phenyl-sulfonyl)-2-butene was employed as "a convenient, storable source of" the diene.

- 5. B. S. Thyagarajan, K. C. Majumdar and D. K. Bates, J. Het. Chem., 12, 59 (1975).
- 6. The relative peak heights of the signals from the vinylic protons were determined at two different spectrum amplitudes (12.5 and 40). All the E/Z ratios determined from these spectra were within ±5% the "true" composition of the mixtures at sp. amp. 12.5 and within ±1% at sp. amp. 40. See below:

Authentic E/Z Ratio	E/Z Ratios Determined from the Relative Peak Heights of Vinyl Protons				
of Comp. 6c	sp. amp. 12.5	(± error)	sp. amp. 40	(±error)	
80/20	78.0/22.0	(2.0)	79.6/20.4	(0.4)	
70/30	66.1/33.9	(3.9)	69.3/30.7	(0.7)	
60/40	62.5/37.5	(2.5)	57.6/42.4	(2.4)	
40/60	45.1/54.9	(5.1)	39.6/60.4	(0.4)	
30/70	28.9/71.1	(1.1)	29.5/70.5	(0.5)	
20/80	20.8/79.2	(0.8)	19.2/80.8	(0.8)	